

1 **Viral RNA level, serum antibody responses, and transmission risk in discharged COVID-19**
2 **patients with recurrent positive SARS-CoV-2 RNA test results: a population-based**
3 **observational cohort study**

4

5 Chao Yang, Ph.D.^{1†}, Min Jiang, Ph.D.^{1†}, Xiaohui Wang, Ph.D.^{1†}, Xiujuan Tang, MPH^{1†}, Shisong Fang,
6 Ph.D.^{1†}, Hao Li, Ph.D.¹, Le Zuo, MPH¹, Yixiang Jiang, MPH¹, Yifan Zhong, MPH¹, Qiongcheng Chen,
7 B.S.¹, Chenli Zheng, B.S.¹, Lei Wang, MPH¹, Shuang Wu, MPH¹, Weihua Wu, MPH¹, Hui Liu, MPH¹,
8 Jing Yuan, M.D.³, Xuejiao Liao, M.D.³, Zhen Zhang, MPH¹, Yiman Lin, B.S.¹, Yijie Geng, B.S.¹,
9 Huan Zhang, MPH², Huanying Zheng, B.S.², Min Wan, MPH⁵, Linying Lu, MPH¹, Xiaohu Ren,
10 MPH¹, Yujun Cui, Ph.D.⁴, Xuan Zou, MPH¹, Tiejian Feng, MPH¹, Junjie Xia, Ph.D.¹, Ruifu Yang,
11 Ph.D.^{4*}, Yingxia Liu, Ph.D.^{3*}, Shujiang Mei, MPH^{1*}, Baisheng Li, M.D.^{2*}, Zhengrong Yang, Ph.D.^{1*},
12 Qinghua Hu, MPH^{1*}

13

14 ¹Shenzhen Center for Disease Control and Prevention, Shenzhen, China

15 ²Guangdong Provincial Center for Disease Control and Prevention, Guangdong, China

16 ³State Key Discipline of Infectious Disease, National Clinical Research Center for infectious disease,
17 Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and
18 Technology, Shenzhen, China

19 ⁴State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and
20 Epidemiology, Beijing, China

21 ⁵Shenzhen LongHua District Maternity and Child Healthcare Hospital, Shenzhen, China

22 [†]These five authors contributed equally to this work.

23 *Correspondence: ruifuyang@gmail.com; yingxialiu@hotmail.com; sjmei66@163.com;
24 libsn@126.com; yangzr@szcdc.net; huqinghua03@163.com

25

26 **Summary**

27 **Background** Managing discharged COVID-19 (DC) patients with recurrent positive (RP) SARS-
28 CoV-2 RNA test results is challenging. We aimed to comprehensively characterize the viral RNA
29 level and serum antibody responses in RP-DC patients and evaluate their viral transmission risk.

30

31 **Methods** A population-based observational cohort study was performed on 479 DC patients
32 discharged from February 1 to May 5, 2020 in Shenzhen, China. We conducted RT-qPCR, antibody
33 assays, neutralisation assays, virus isolation, whole genome sequencing (WGS), and
34 epidemiological investigation of close contacts.

35

36 **Findings** Of 479 DC patients, the 93 (19%) RP individuals, including 36 with multiple RP results,
37 were characterised by young age (median age: 34 years, 95% confidence interval [CI]: 29–38 years).
38 The median discharge-to-RP length was 8 days (95% CI: 7–14 days; maximum: 90 days). After
39 readmission, RP-DC patients exhibited mild (28%) or absent (72%) symptoms, with no disease
40 progression. The viral RNA level in RP-DC patients ranged from $1\cdot9\text{--}5\cdot7 \log_{10}$ copies/mL (median:
41 $3\cdot2$, 95% CI: $3\cdot1\text{--}3\cdot5$). At RP detection, the IgM, IgG, IgA, total antibody, and neutralising antibody
42 (NAb) seropositivity rates in RP-DC patients were 38% (18/48), 98% (47/48), 63% (30/48), 100%
43 (48/48), and 91% (39/43), respectively. Regarding antibody levels, there was no significant
44 difference between RP-DC and non-RP-DC patients. The antibody level remained constant in RP-
45 DC patients pre- and post-RP detection. Virus isolation of nine representative specimens returned
46 negative results. WGS of six specimens yielded only genomic fragments. No clinical symptoms
47 were exhibited by 96 close contacts of 23 RP-DC patients; their viral RNA (96/96) and antibody
48 (20/20) test results were negative. After full recovery, 60% of patients (n=162, 78 no longer RP RP-
49 DC and 84 non-RP-DC) had NAb titres of $\geq 1:32$.

50

51 **Interpretation** RP may occur in DC patients following intermittent and non-stable excretion of low
52 viral RNA levels. RP-DC patients pose a low risk of transmitting SARS-CoV-2. An NAb titre of \geq
53 1:32 may provide a reference indicator for evaluating humoral responses in COVID-19 vaccine
54 clinical trials.

55

56 **Funding** Sanming Project of Medicine in Shenzhen, China National Science and Technology
57 Major Projects Foundation, Special Foundation of Science and Technology Innovation Strategy of
58 Guangdong Province of China, and Shenzhen Committee of Scientific and Technical Innovation
59 grants.

60

61 **Introduction**

62 Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus
63 2 (SARS-CoV-2), has spread globally to over 213 countries.¹⁻⁵ As of July 10, 2020, there have been
64 more than 12,000,000 confirmed patients and 540,000 deaths. Currently, there are approximately
65 200,000 new confirmed patients daily, posing huge challenges for public health and medical
66 institutions.

67

68 Worldwide, there are more than 6,500,000 recovered COVID-19 patients.⁴ Recent reports have
69 described discharged COVID-19 (DC) patients with recurrent positive (RP) reverse transcription
70 quantitative PCR (RT-qPCR) test results for SARS-CoV-2 (RP-DC patients).⁶⁻¹⁰ These studies
71 focused on the clinical characteristics of a small number (<40) of RP-DC patients and found that
72 they generally showed no clinical symptoms or disease progression. However, their positive SARS-
73 CoV-2 RNA test results suggest that these patients might be virus carriers. The management of RP-
74 DC patients is challenging because of the current lack of understanding regarding their viral RNA
75 level, antibody responses, and viral transmission risk. In China, RP-DC patients are placed under a
76 costly fourteen-day quarantine. Clarifying the characteristics and viral transmission risk of RP-DC
77 patients is critical for appropriately managing their cases.

78

79 We performed a population-based observational cohort study of 479 DC patients, discharged from
80 February 1 to May 5, 2020 in Shenzhen, China. Based on the results of integrating RT-qPCR,
81 antibody assays, neutralisation assays, virus isolation, whole genome sequencing (WGS), and
82 epidemiological investigation of close contacts, we comprehensively detailed the demographic,
83 clinical, viral RNA level, and antibody response characteristics and evaluated the viral transmission
84 risk of RP-DC patients.

85

86 **Methods**

87 **Patients**

88 All COVID-19 patients in Shenzhen were treated at the designated Shenzhen Third People's
89 Hospital; their cases were reported to Shenzhen Center for Disease Control and Prevention (CDC)¹¹.
90 This study enrolled all DC patients discharged from February 1 to May 5, 2020 in Shenzhen,
91 including asymptomatic patients identified during the RT-qPCR screening of confirmed COVID-19
92 patient close contacts (Figure 1a). Discharge criteria included: (1) normal temperature for >3 days,
93 (2) resolved respiratory symptoms, (3) substantial pulmonary lesion absorption on chest computed
94 tomography (CT) images, and (4) negative results from two consecutive SARS-CoV-2 RNA tests
95 conducted >1 day apart. After discharge, DC patients were quarantined at home (before February
96 18) or in centralised facilities (from February 18) for 14 days. During the 14-day quarantine period,
97 both nasopharyngeal and anal swabs (n=2,442, 4–20 per person) were collected from each patient
98 on the 7th and 14th days (before March 18) or the 1st, 3rd, 7th, and 14th days (from March 18) for
99 SARS-CoV-2 RNA detection by RT-qPCR. From March 18, serum specimens were collected on the
100 1st, 3rd, 7th, and 14th days for antibody assays (n=499, 2–8 per person), and some RP-DC patient
101 blood specimens (n=147, 1–4 per person) were collected for SARS-CoV-2 RNA detection by RT-
102 qPCR. After quarantine, DC patients were regularly followed-up on the 7th, 14th, 30th, and 60th days
103 post-discharge. Demographic and clinical severity information was extracted from electronic
104 hospital medical records. Clinical severity on first admission was classified as asymptomatic, mild,
105 moderate, or critical based on Chinese Guidelines for Diagnosis and Treatment for Novel
106 Coronavirus Pneumonia¹².

107

108 The study was approved by the Ethics Committee of Shenzhen CDC (QS2020060007). As data
109 collection is part of the public health investigation of an emerging outbreak, individual informed
110 consent was waived.

111

112 **Case definition**

113 Because negative results from two consecutive SARS-CoV-2 RNA tests were part of the discharge
114 criteria, a DC patient with recurrent positive test results was defined as an RP-DC patient (Figure
115 1b and appendix Figure S1). These patients were readmitted to hospital for further medical

116 observation until they met the discharge criteria again, including negative results from two
117 consecutive SARS-CoV-2 RNA tests. After re-discharge, an RP-DC patient with further positive
118 SARS-CoV-2 RNA test results was defined as a multiple-RP-DC patient. A DC patient with constant
119 negative SARS-CoV-2 RNA test results was defined as a non-RP-DC (NRP-DC) patient.

120

121 **Procedures**

122 SARS-CoV-2 RT-qPCR tests were performed on the day of sampling using commercial kits
123 (Zhongshan Daan Biotech). After 45 cycles, specimens with cycle threshold (Ct) values of ≤ 40 for
124 both tested genes were considered positive; single-gene-positive specimens were retested and
125 considered positive if the Ct values from the repeat tests were ≤ 40 . The viral RNA level
126 (copies/mL) was calculated from Ct values based on the standard curve of control product
127 (Zhongshan Daan Bio-Tech, appendix Figure S2). Serum immunoglobulin (Ig) antibody against the
128 SARS-CoV-2 surface spike protein receptor-binding domain (RBD) was measured using a
129 chemiluminescence kit (IgM, IgG, and total antibody, Beijing Wantai Biotech, measured by cut-off
130 index [COI]) or enzyme-linked immunosorbent assay kit (IgA, Beijing Hotgen Biotech, measured
131 by optical density at 450/630 nm [OD_{450/630}]) in accordance with the manufacturer's instructions.

132 Virus neutralisation assays were performed using SARS-CoV-2 virus strain 20SF014/vero-E6/3
133 (GISAID accession number EPI_ISL_403934) in biosafety level 3 (BSL-3) laboratories to obtain
134 the neutralising antibody (NAb) titre. To define the cut-off for seropositivity, 169 and 128 serum
135 specimens from confirmed COVID-19 patients and healthy persons were used as positive and
136 negative controls, respectively. Specimens with COI >1 (IgM, IgG, or total antibody), OD_{450/630} >0.3
137 (IgA), or an NAb titre of $\geq 1:4$ were considered positive. Vero-E6 cells were used for virus isolation
138 in a BSL-3 laboratory. WGS was performed after specifically amplifying SARS-CoV-2 RNA.
139 Epidemiological investigations were conducted on 96 close contacts (unprotected exposure) of 23
140 RP-DC patients, identified during follow-up. Detailed methods are provided in the Supplementary
141 Appendix.

142

143 **Statistical analysis**

144 We performed statistical analyses using R version 3.6.1. Categorical and continuous variables were
145 compared using Chi-squared and Mann-Whitney *U* tests, respectively. Correlations were assessed

146 using Spearman's correlation test. For all tests, $p<0.05$ was considered statistically significant.

147

148 **Role of the funding source**

149 The funders had no role in study design; data collection, analysis, or interpretation; or report writing.

150 The corresponding authors had full access to all study data and had final responsibility for the
151 decision to submit for publication.

152

153 **Results**

154 From February 1 to May 5, 2020, 504 COVID-19 patients were discharged in Shenzhen. We
155 excluded 25 of them from this study because of insufficient baseline information and enrolled the
156 remaining 479 (438 symptomatic and 41 asymptomatic) patients (Figure 1a). As of July 10, 93 (19%)
157 RP-DC patients were identified, including 45 (9%) multiple-RP-DC patients with two (n=32, 7%),
158 three (n=9, 2%), or four (n=4, 1%) RP results post-discharge (Figure 1b and appendix Figure S1).
159 Of the 93 RP-DC patients, 70 (75%) were identified during their fourteen-day quarantine, and the
160 remaining 23 (25%) were identified during follow-up. The median time from discharge to the first
161 RP was 8 days (95% confidence interval [CI]: 7–14 days; maximum: 90 days). The median times
162 from discharge to final RP and from disease onset to final RP (viral RNA duration time) were 15
163 days (95% CI: 9–21 days; maximum: 90 days) and 46 days (95% CI: 38–53 days; maximum: 113
164 days), respectively (Table 1, Figure 2a–b and appendix Figure S1).

165

166 There were more female (57/93, 61%) than male RP-DC patients (36/93, 39%, Table 1). This group
167 was significantly younger (median age: 34 vs 45 years, $p<0.0001$) compared with the NRP-DC
168 patients, with 41% of RP-DC patients aged under 30 years vs 22% of NRP-DC patients ($p=0.0003$).
169 RP-DC patients had a median hospitalization period of 20 days, and their clinical severity on first
170 admission was mostly moderate (69/93, 74%) or mild (13/93, 14%). No RP-DC patients had
171 underlying immunodeficiency diseases, and 14 RP-DC patients (15%) were treated with steroids
172 (methylprednisolone and/or dexamethasone) during hospitalization. There were no significant
173 differences between RP-DC and NRP-DC patients in terms of hospitalization period, clinical
174 severity on first admission, or steroid use ($p>0.05$). The C-reactive protein (CRP) level of RP-DC
175 patients on first admission was significantly higher than that of NRP-DC patients ($p=0.03$), but there

176 was no significant difference in the CRP level on discharge ($p=0.74$). Compared with single-RP-
177 DC patients, multiple-RP-DC patients had longer hospitalization periods (median: 24 vs 18 days,
178 $p=0.02$) and viral RNA duration times (median time from onset to last RP: 65 vs 33 days, $p<0.0001$),
179 but had no significant differences in their other demographic or clinical characteristics.

180

181 During readmission, 67 of 93 RP-DC patients (72%) had no symptoms, while 26 (28%) had mild
182 symptoms, including slight cough (18/93 [19%]) and chest tightness (3/93 [3%]). One patient (male,
183 12 years old) had a brief fever (temperature: 37.5 °C) for one day. Routine blood tests showed
184 elevated interleukin 6 levels in one patient (male, 62 years old); all other patients had normal levels.
185 Chest CT revealed that 18 (19%) patients had no pneumonia lesions and the lung lesions of the
186 remaining 75 patients were improved (68/93, 73%) or unchanged (7/93, 8%) from first discharge.
187 There were no significant clinical symptom differences between single- and multiple-RP-DC
188 patients during readmission.

189

190 Seventy-one (76%) RP-DC patients were identified by only positive nasopharyngeal swab results,
191 14 (15%) by only positive anal swab results, and 8 (9%) by positive results for both specimen types.
192 All tested blood specimens (147/147) from RP-DC patients were SARS-CoV-2 RNA negative. The
193 median Ct values of N and Orflab genes were 35 (95% CI: 35–36) and 36 (95% CI: 36–37),
194 respectively, which are significantly higher than the corresponding values at disease onset (N gene
195 median Ct: 31, 95% CI: 29–31; Orflab gene median Ct: 31, 95% CI: 30–32, $p<0.0001$; Figure 2c).
196 Furthermore, RP-DC patient viral RNA levels ranged from 1.9 to $5.7 \log_{10}$ copies/mL (median: 3.1 ,
197 95% CI: 3.0 – 3.2), which was significantly lower than the corresponding values at disease onset
198 (median: $4.5 \log_{10}$ copies/mL, 95% CI: 4.3 – 4.8 , $p<0.0001$; Figure 2d), indicating low viral RNA
199 levels in RP-DC patients. Most (89/93; 96%) RP-DC patients had a maximum viral RNA level of
200 $<5 \log_{10}$ copies/mL. There was no significant difference in viral RNA levels between patients of
201 different demographic and clinical categories, between single- and multiple-RP-DC patients, or
202 between positive nasopharyngeal and anal swab specimens ($p>0.05$, appendix Figure S3). There
203 was a significant negative correlation between discharge time and viral RNA level ($R=0.20$, $p=0.002$;
204 Figure 2a), and the viral RNA level of multiple-RP-DC patients showed a declining trend as the
205 number of RP detections increased (Figure 2e).

206

207 To investigate the antibody responses of RP-DC and NRP-DC patients, their SARS-CoV-2-specific
208 anti-RBD IgM, IgG, IgA, total antibody, and NAb were assessed. A total of 499 serum specimens
209 were obtained from 78 RP-DC patients (289 specimens, 1–9 specimens/patient) and 94 NRP-DC
210 patients (210 specimens, 1–6 specimens/patient) within 14 weeks post-discharge (within 17 weeks
211 post-disease onset). The IgM, IgG, IgA, total antibody, and NAb seropositivity rates at first post-
212 discharge sampling (median: 24 days post-discharge) in RP-DC patients were 37% (29/78), 99%
213 (77/78), 62% (48/78), 99% (77/78), and 88% (69/78), respectively, with a median NAb titre of 1:32
214 (95% CI: 1:16–1:32), which were not significantly different ($p>0.05$) from those of NRP-DC
215 patients (50% [47/94], 98% [92/94], 50% [47/94], 99% [93/94], and 92% [77/84], respectively;
216 median NAb titre: 1:16, 95% CI: 1:16–1:32). For RP-DC patients whose specimens were collected
217 on the day of RP detection, these rates were 38% (18/48), 98% (47/48), 63% (30/48), 100% (48/48),
218 and 91% (39/43), respectively, with a median NAb titre of 1:32 (95% CI: 1:16–1:32).

219

220 We further quantitatively investigated the RP-DC and NRP-DC patient antibody levels during
221 different sampling periods. Seventy five percent of RP-DC patients were identified during their two-
222 week quarantine; no significant differences from NRP-DC patients were identified in specimens
223 from this period (Figure 3a). During our entire sampling period (3–17 weeks post-disease onset), no
224 significant weekly differences were identified, except the IgM and total antibody level in week 3
225 and IgM level in weeks 6–8 ($p<0.05$, Figure 3b). Specifically, one (1%) and five (6%) RP-DC
226 patients were negative for IgG and NAb, respectively, which is not significantly different ($p>0.05$)
227 from NRP-DC patients (IgG-negative: 3% [3/94]; Nab-negative: 8% [7/84]). Furthermore, we
228 compared the RP-DC patient antibody levels on the day of RP detection and within one week before
229 and after RP detection (when patients were viral RNA negative); no significant differences were
230 identified (Figure 3c). Together, these results indicate that the SARS-CoV-2-specific anti-RBD
231 antibody levels (excluding IgM) are similar in RP-DC and NRP-DC patients and in RP-DC patients
232 regardless of current RP detection. Additionally, there was a significant correlation between NAb
233 titres and antibody levels ($R>0.40$, $p<0.0001$), particularly for IgG ($R=0.73$, $p<0.0001$) and total
234 antibody ($R=0.77$, $p<0.0001$), which indicates that they may be alternative indicators of NAb titre
235 (appendix Figure S4).

236

237 Virus isolation and WGS were performed to test whether live virus and/or complete viral genome,
238 respectively, were detectable in RP-DC patients. Viral isolations of nine RP-DC patient
239 nasopharyngeal specimens with representative Ct values (27–39, four specimens with a Ct value
240 of <30 were included) were negative, as confirmed by testing the cell culture for SARS-CoV-2
241 RNA. WGS was successful for six of the nine specimens, but only genome fragments were
242 obtained. The genome coverage of the specimens with the lowest Ct value (Ct: 27) was 55%,
243 whereas the coverage of other specimens was <10%.

244

245 To assess whether RP-DC patients could spread the virus to close contacts, we conducted prompt
246 epidemiological investigations of 23 RP-DC patients (identified during follow-up) on the day of
247 RP detection, which identified 96 close contacts. None showed clinical symptoms during the two-
248 week follow-up, and all had negative SARS-CoV-2 RNA test results; 20 were tested for serum
249 SARS-CoV-2-specific anti-RBD antibodies (IgM, IgG, and total antibody), and the results were
250 also negative. Notably, one paediatric RP-DC patient was identified at 90 days post-discharge,
251 after being in school for 11 days, and all 1,200 of his candidate contacts (teachers and classmates)
252 showed no clinical symptoms during fourteen-day observation and had negative results from
253 SARS-CoV-2 RNA tests. As of July 10, no close or candidate contacts of RP-DC patients had
254 become confirmed COVID-19 patients. Additionally, a retrospective investigation of the contact
255 history of 154 COVID-19 patients after February 1 found that none were epidemiologically related
256 to our RP-DC patients. These results provide direct evidence that RP-DC patients have a low viral
257 transmission risk.

258

259 All RP-DC patients were re-discharged after obtaining negative SARS-CoV-2 RNA detection
260 results during quarantine. As of July 10, none of our RP-DC patients had any further RP results
261 from SARS-CoV-2 RNA tests, i.e. all were fully recovered. Among the 479 fully recovered
262 COVID-19 patients, NAb titres were tested in 162 (84 NRP-DC and 78 RP-DC patients), 93%
263 (151/162) of whom were NAb-positive with a median titre of 1:32. Notably, five patients
264 developed detectable NAb during quarantine or follow-up, including three RP-DC and two NRP-
265 RC patients, whereas 11 fully recovered patients remained NAb negative during our sampling

266 period. Based on the reverse cumulative distribution curve principle¹³, we analysed the NAb titre
267 distribution at the end of quarantine for 162 fully recovered COVID-19 patients (Figure 4). RP-
268 DC and NRP-DC patients had similar NAb titre distributions. Although some patients had a high
269 NAb titre (28% with NAb titre of $\geq 1:64$), 60% of fully recovered patients had NAb titres of \geq
270 1:32. Thus, this value could be used as a reference indicator for evaluating humoral responses to
271 COVID-19 vaccine candidates in future clinical trials.

272

273 **Discussion**

274 To our knowledge, this is the first population-based study to comprehensively describe the viral
275 RNA level and antibody response characteristics of RP-DC patients and evaluate their viral
276 transmission risk. RP-DC patients were characterised by younger age, mild or absent symptoms,
277 and no disease progression. They generally had low viral RNA levels but long viral RNA
278 durations (up to 113 days post-disease onset). Although the prolonged presence of SARS-CoV-2
279 RNA in COVID-19 patients has been reported,^{14, 15} our results suggest that low levels of SARS-
280 CoV-2 RNA persisted in some patients after both clinical recovery and initial viral-negative
281 conversion. Except for IgM, no significant differences in antibody or NAb levels were identified
282 between RP-DC and NRP-DC patients or in RP-DC patients over time (before, during, or after RP
283 detection), suggesting that RP occurrence may not be related to humoral immunity. The low viral
284 RNA levels and effective, long-lasting antibody responses in RP-DC patients, combined with the
285 failed virus isolation, fragmented genome detection, and lack of close contact infections from
286 these individuals, suggest that RP-DC patients pose a low risk of viral transmission. Furthermore,
287 60% of the fully recovered COVID-19 patients had NAb titres of $\geq 1:32$; this value could be used
288 to evaluate the humoral response in COVID-19 vaccine clinical trials.

289

290 By systematically monitoring SARS-CoV-2 RNA in DC patients during quarantine and follow-up,
291 we found that RP-DC patients accounted for 19% of DC patients, which is close to most previous
292 reports (15%–21%)^{7, 9, 10} but much higher than one recent report where 3% (23/651) of RP-DC
293 patients were identified in a routine health check of DC patients.¹⁶ Considering that multiple
294 negative RNA tests were also identified in our RP-DC patients, differences in detected RP-RC

295 patient proportions may be related to the viral RNA testing frequency. However, in the context of
296 systematic follow-up and testing, RP occurrence in DC patients is unlikely to be rare.

297

298 Although RP-DC patients have been observed by multiple independent researchers⁶⁻¹⁰ and
299 government authorities, including the Korean CDC,¹⁷ the cause of RP occurrence remains unclear,
300 and several hypotheses have been proposed. 1) RP might be due to false-negative SARS-CoV-2
301 RNA test results at discharge.^{9, 18} Here, in the 59% of RP-DC patients who had additional negative
302 test results before their first RP result, the sampling and testing were performed by the same
303 technician using the same kits, minimizing the likelihood of false-negative results. 2) RP could be
304 due to post-discharge reinfection. Here, 75% of RP-DC patients were identified during quarantine,
305 and those identified during follow-up did not report any contact with COVID-19 patients, making
306 reinfection unlikely. 3) In people with low antibody levels or immunity, uneradicated virus could
307 cause secondary infections.¹⁹ We did not detect significant differences in antibody levels between
308 RP-DC and NRP-DC patients or in RP-DC patients over time, suggesting that humoral immunity
309 may not be related to RP occurrence. Additionally, none of the RP-DC patients had
310 immunodeficiency diseases, and there was no significant difference in steroid treatment between
311 RP-DC and NRP-DC patients. However, more data are needed to verify the relationship between
312 RP occurrence and immunity, especially regarding cellular immunity. 4) RP occurrence may be
313 due to the shedding of 'dead' virus particles. This possibility is consistent with our negative virus
314 isolation results. However, failed viral isolation does not confirm a lack of live virus; Wölfel and
315 colleagues²⁰ found that live virus cannot be successfully isolated when the viral load is below 10^6
316 copies/mL. More sensitive live virus detection methods, such as identification of subgenomic
317 messenger RNA²⁰, are needed to prove this hypothesis. Based on our data from SARS-CoV-2
318 RNA testing on 2,589 clinical samples collected from February 18 to May 5, eleven RP-RC
319 patients were identified ≥ 30 days post-discharge (maximum: 90 days post-discharge), and all
320 patients had recovered; therefore, we propose that RP occurrence in DC patients is due to their
321 intermittent and non-stable excretion of low levels of viral RNA. However, further studies on the
322 mechanism of RP occurrence are needed.

323

324 Because SARS-CoV-2 RNA positivity does not necessarily translate to infectivity, we integrated
325 multiple approaches to systematically evaluate the viral transmission risk posed by RP-DC
326 patients. The viral RNA level can be a useful indicator for assessing transmission risk. Wölfel and
327 colleagues²⁰ proposed that patients with a viral load of $<5 \log_{10}$ copies/mL posed a low
328 transmission risk based on virus isolation results. Here, 96% of RP-DC patients had a maximum
329 viral RNA level of $<5 \log_{10}$ copies/mL (range: 1·9–5·7 \log_{10} copies/mL). Four RP-DC patients had
330 a maximum viral RNA level of $>5 \log_{10}$ copies/mL, linked with a possible risk of viral
331 transmission. To assess whether RP-DC patients shed live virus, we attempted virus isolation on
332 the four specimens with a viral RNA level of $>10^5$ copies/mL and five representative specimens
333 with lower viral RNA levels. All nine specimens produced negative results. The low viral RNA
334 levels and negative virus isolation in samples from the RP-DC patients indicate that their
335 transmission risk is low.

336

337 WGS can be used to identify viruses with specific mutations, the presence of which may identify
338 reinfection from another source. However, we obtained only genome fragments from the RP-DC
339 patient specimens after SARS-CoV-2-specific amplification, including the specimen with the
340 lowest Ct value (Ct: 27, viral RNA level: 5·7 \log_{10} copies/mL), which limited our further
341 investigation. In comparison, Liu and colleagues²¹ found that sequencing reads can cover $\geq 90\%$ of
342 reference genomes with a Ct value of <30 , irrespective of the amplification and sequencing
343 approach. Although technique differences exist, the low genome coverage of RP-DC patient
344 specimens suggests a low viral RNA level, further supporting the idea that RP-DC patients pose a
345 low transmission risk.

346

347 The most effective way to assess the transmission risk of RP-DC patients is to conduct
348 epidemiological investigations of their close contacts. When conducting epidemiological
349 investigations on 790 close contacts of 285 RP-DC patients, the Korean CDC did not identify any
350 infections.¹⁷ However, the possibility of asymptomatic infections in those contacts was not
351 excluded through SARS-CoV-2 RNA testing and antibody testing. Here, not only did all 96 close
352 contacts and 1,200 candidate contacts show no clinical symptoms, they also had negative SARS-
353 CoV-2 RNA test results, and 20 of them had negative antibody results, suggesting there were no

354 asymptomatic infections. As of June 10, no COVID-19 cases have been reported among those
355 contacts. These findings directly support our conclusion that RP-DC patients pose a low
356 transmission risk. Furthermore, the RP-DC patients had high and long-lasting NAb levels,
357 suggesting that they can effectively clear virus, which further reduces their viral transmission risk.

358

359 Whether COVID-19 convalescent patients are protected against future SARS-CoV-2 infections is
360 largely unknown.^{22, 23} NAb play important roles in virus clearance and are considered vital for
361 protection against viral disease. Among the 162 fully recovered RP-DC or NRP-DC patients who
362 were tested for NAb, 93% (151/162) were NAb positive, with a median titre of 1:32, and their
363 detectable NAb was maintained for up to 17 weeks post-disease onset, suggesting that most
364 recovered patients obtained effective and long-lasting protection against future SARS-CoV-2
365 infection. Effective vaccines against SARS-CoV-2 infection are urgently needed to reduce the
366 burden of COVID-19, and more than 120 candidate vaccines are currently being developing
367 worldwide.^{5, 24, 25} NAb titres in recovered COVID-19 patients make ideal reference values to use
368 as vaccine humoral immunogenicity endpoints in vaccine efficacy evaluations. Based on our
369 finding that 60% of fully recovered patients had NAb titres of $\geq 1:32$, future COVID-19 vaccine
370 clinical trials might consider using this titre as a reference indicator for evaluating humoral
371 responses.

372

373 Our study has several limitations. First, this was a single-centre study conducted on all DC
374 patients from Shenzhen. Because there are differences in the discharge criteria and SARS-CoV-2
375 RNA testing methods among different cities and counties, our RP incidence needs to be verified
376 by multicentre studies. Second, we collected only nasopharyngeal swab, anal swab, and serum
377 specimens based on current sampling policies; other specimen types with generally higher viral
378 loads, such as lower respiratory tract and sputum specimens, were not collected. Thus, the RP
379 incidence in this study represents a conservative estimation. Third, the systemic collection of
380 serum specimens started mid-study, and serum specimens from RP-DC patients during their
381 hospitalization were not available, which limited further investigations on the antibody level
382 dynamics of RP-DC patients. Finally, due to the strict management of DC patients, most DC

383 patients were identified during quarantine and consequently had few close contacts. This study
384 included the close contacts of only 23 RP-DC patients; larger scale epidemiologic studies are
385 needed to further confirm the transmission risk posed by RP-DC patients.

386

387 In conclusion, our study found that intermittent detection of low levels of SARS-CoV-2 RNA in DC
388 patients is not rare and that the timing of RP detection varies (up to 90 days post-discharge). The
389 transmission risk posed by RP-DC patients is likely low. To better balance COVID-19 prevention
390 and control with economic activities and to more effectively manage DC patients while minimizing
391 the psychological impact on these individuals, we suggest that public health authorities should take
392 a relatively relaxed approach to managing DC patients. However, the follow-up and personal
393 protection of DC patients should be strengthened. Last, given that 60% of fully recovered patients
394 had NAb titres of $\geq 1:32$, this value may serve as a useful reference indicator for evaluating humoral
395 responses to COVID-19 vaccine candidates in future clinical trials.

396

397 **Contributors**

398 RY, YL, SM, BL, ZR, and QH conceived and supervised this study. CY, MJ, XW, SF, HL, LZ, YJ,
399 YZ, QC, CZ, LW, SW, WW, YL, HZ, and HYZ performed laboratory tests. XT, HL, JY, XL, ZZ,
400 XR, XZ, TF, JX, YG, MW, and LL collected and organised data. CY, MJ, XW, QH, YC, and RY
401 performed data and results interpretation. CY, XW, and MW conducted statistical analyses. CY,
402 MJ, RY, and QH drafted the manuscript and figures. All authors reviewed and approved the final
403 version of manuscript.

404

405 **Declaration of interests**

406 We declare no competing interests.

407

408 **Acknowledgments**

409 This research was supported by Sanming Project of Medicine in Shenzhen (No.
410 SZSM201811071), the China National Science and Technology Major Projects Foundation (No.
411 2017ZX10303406), Special Foundation of Science and Technology Innovation Strategy of

412 Guangdong Province of China (No. 2020B1111340077), and a Shenzhen Committee of Scientific
413 and Technical Innovation grant (No. JCYJ20180508152244835). We thank Prof. Fengcai Zhu
414 from Jiangsu Center for Disease Control and Prevention, China, for useful advice on neutralisation
415 antibody titre analysis and critical editing of the manuscript. We thank Prof. Ming Zeng from
416 Shenzhen Kangtai Biological Products Co., Ltd., for critical editing of the manuscript. We thank
417 Gillian Campbell, PhD, and Katie Oakley, PhD, from Liwen Bianji, Edanz Group China
418 (www.liwenbianji.cn/ac) for editing the English text of drafts of this manuscript. We thank all the
419 patients who consented to donate their data for analysis and the medical staff members who are on
420 the front line of caring for patients.

421

422 **References**

- 423 1. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. *New England Journal of Medicine* 2020.
- 424 2. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. *The Lancet* 2020; **395**(10224): 565-74.
- 425 3. Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. *The New England journal of medicine* 2020; **382**(18): 1708-20.
- 426 4. Organization WH. Coronavirus disease (COVID-2019) situation reports. <https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/>.
- 427 5. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. *JAMA*.
- 428 6. Lan L, Xu D, Ye G, et al. Positive RT-PCR test results in patients recovered from COVID-19. *Jama* 2020; **323**(15): 1502-3.
- 429 7. An J, Liao X, Xiao T, et al. Clinical characteristics of the recovered COVID-19 patients with re-detectable positive RNA test. *medRxiv* 2020.
- 430 8. Chen D, Xu W, Lei Z, et al. Recurrence of positive SARS-CoV-2 RNA in COVID-19: A case report. *International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases* 2020; **93**: 297-9.
- 431 9. Xiao AT, Tong YX, Zhang S. False - negative of RT - PCR and prolonged nucleic acid conversion in COVID - 19: Rather than recurrence. *Journal of Medical Virology* 2020.
- 432 10. Yuan J, Kou S, Liang Y, Zeng J, Pan Y, Liu L. PCR assays turned positive in 25 discharged COVID-19 patients. *Clinical Infectious Diseases* 2020.
- 433 11. Bi Q, Wu Y, Mei S, et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. *The Lancet Infectious Diseases* 2020.
- 434 12. Guidelines for Diagnosis and Treatment for Novel Coronavirus Pneumonia (Seventh Edition). <http://www.nhc.gov.cn/yzyqj/s7653p/202003/46c9294a7dfe4cef80dc7f5912eb1989.shtml>.
- 435 13. Reed GF, Meade BD, Steinhoff MC. The reverse cumulative distribution plot: a graphic method for exploratory analysis of antibody data. *Pediatrics* 1995; **96**(3): 600-3.

451 14. Xu K, Chen Y, Yuan J, et al. Factors associated with prolonged viral RNA shedding in patients with
452 COVID-19. *Clinical Infectious Diseases* 2020.

453 15. Wu Y, Guo C, Tang L, et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. *The
454 Lancet Gastroenterology & hepatology* 2020; **5**(5): 434-5.

455 16. Mei Q, Li J, Du R, Yuan X, Li M, Li J. Assessment of patients who tested positive for COVID-19 after
456 recovery. *Lancet Infect Dis* 2020.

457 17. Findings from investigation and analysis of re-positive cases.
458 <https://wwwcdcgokr/board/boardes?mid=a30402000000&bid=0030>.

459 18. Li Y, Yao L, Li J, et al. Stability issues of RT - PCR testing of SARS - CoV - 2 for hospitalized patients
460 clinically diagnosed with COVID - 19. *Journal of Medical Virology* 2020.

461 19. Li K, Wu M, Huang B, et al. The Dynamic Changes of Antibodies against SARS-CoV-2 during the
462 Infection and Recovery of COVID-19. *medRxiv* 2020.

463 20. Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with
464 COVID-2019. *Nature* 2020; **581**(7809): 465-9.

465 21. Lu J, du Plessis L, Liu Z, et al. Genomic Epidemiology of SARS-CoV-2 in Guangdong Province,
466 China. *Cell* 2020.

467 22. Ni L, Ye F, Cheng M-L, et al. Detection of SARS-CoV-2-specific humoral and cellular immunity in
468 COVID-19 convalescent individuals. *Immunity* 2020.

469 23. Wu F, Wang A, Liu M, et al. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19
470 recovered patient cohort and their implications. *medRxiv* 2020.

471 24. Amanat F, Krammer F. SARS-CoV-2 vaccines: status report. *Immunity* 2020.

472 25. Zhu F-C, Li Y-H, Guan X-H, et al. Safety, tolerability, and immunogenicity of a recombinant
473 adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-
474 human trial. *The Lancet* 2020.

475

476 **Table 1. Demographic and clinical characteristics of RP-DC and NRP-DC patients**

	RP-DC patients		NRP-DC patients (n=386)	p value (RP-DC vs NRP-DC)
	Single	Multiple		
	Total (n=93)	RP-DC (n=48)	RP-DC (n=45)	
Age — median (95% CI)	34 (29–38)	31 (22–39)	38 (30–50)	45 (40–47) <0·0001
Age — no./total no. (%)				
≤30 yr	38/93 (41%)	23/48 (48%)	15/45 (33%)	84/386 (22%) 0·0003
31–60 yr	46/93 (49%)	20/48 (42%)	26/45 (58%)	212/386 (55%) 0·41
≥61 yr	9/93 (10%)	5/48 (10%)	4/45 (9%)	90/386 (23%) 0·01
Sex — no./total no. (%)				
Female	57/93 (61%)	30/48 (62%)	27/45 (60%)	198/386 (51%) 0·11
Male	36/93 (39%)	18/48 (38%)	18/45 (40%)	188/386 (49%) 0·11
Hospitalization days — median, (95% CI)	20 (17–24)	18 (14–21)	24 (19–31)	21 (20–22) 0·84
Clinical severity on first admission — no./total no. (%)				
Asymptomatic	7/93 (8%)	4/48 (8%)	3/45 (7%)	34/386 (9%) 0·85
Mild	13/93 (14%)	6/48 (12%)	7/45 (16%)	42/386 (11%) 0·51
Moderate	69/93 (74%)	35/48 (73%)	34/45 (76%)	288/386 (75%) 1·00
Severe	3/93 (3%)	3/48 (6%)	0/45 (0%)	19/386 (5%) 0·67
Critical	1/93 (1%)	0/48 (0%)	1/45 (2%)	3/386 (1%) 1·00
Lymphocyte counts (10⁹/L)				
First admission — median (95% CI)	1·62 (1·45–1·78)	1·68 (1·42–1·93)	1·56 (1·33–1·86)	1·59 (1·45–1·83) 0·78
Discharge — median (95% CI)	1·70 (1·59–1·81)	1·70 (1·51–1·97)	1·68 (1·52–1·86)	1·82 (1·73–2·02) 0·07
C-reactive protein (mg/L)				
First admission — median (95% CI)	5·43 (4·00–8·60)	8·51 (2·82–20·44)	4·33 (3·00–6·07)	2·60 (1·20–4·94) 0·03
Discharge — median (95% CI)	1·74 (0·94–2·75)	2·15 (0·76–3·53)	1·66 (0·93–3·00)	1·68 (1·05–3·49) 0·74
Discharge to first RP — median days (95% CI)	8 (7–14)	7 (7–14)	14 (8–14)	
Discharge to last RP — median days (95% CI)	15 (9–21)	8 (7–14)	35 (26–43)	
Onset to last RP — median days (95% CI)	46 (38–53)	33 (29–40)	65 (54–75)	

477

478

479 **Figure legends**

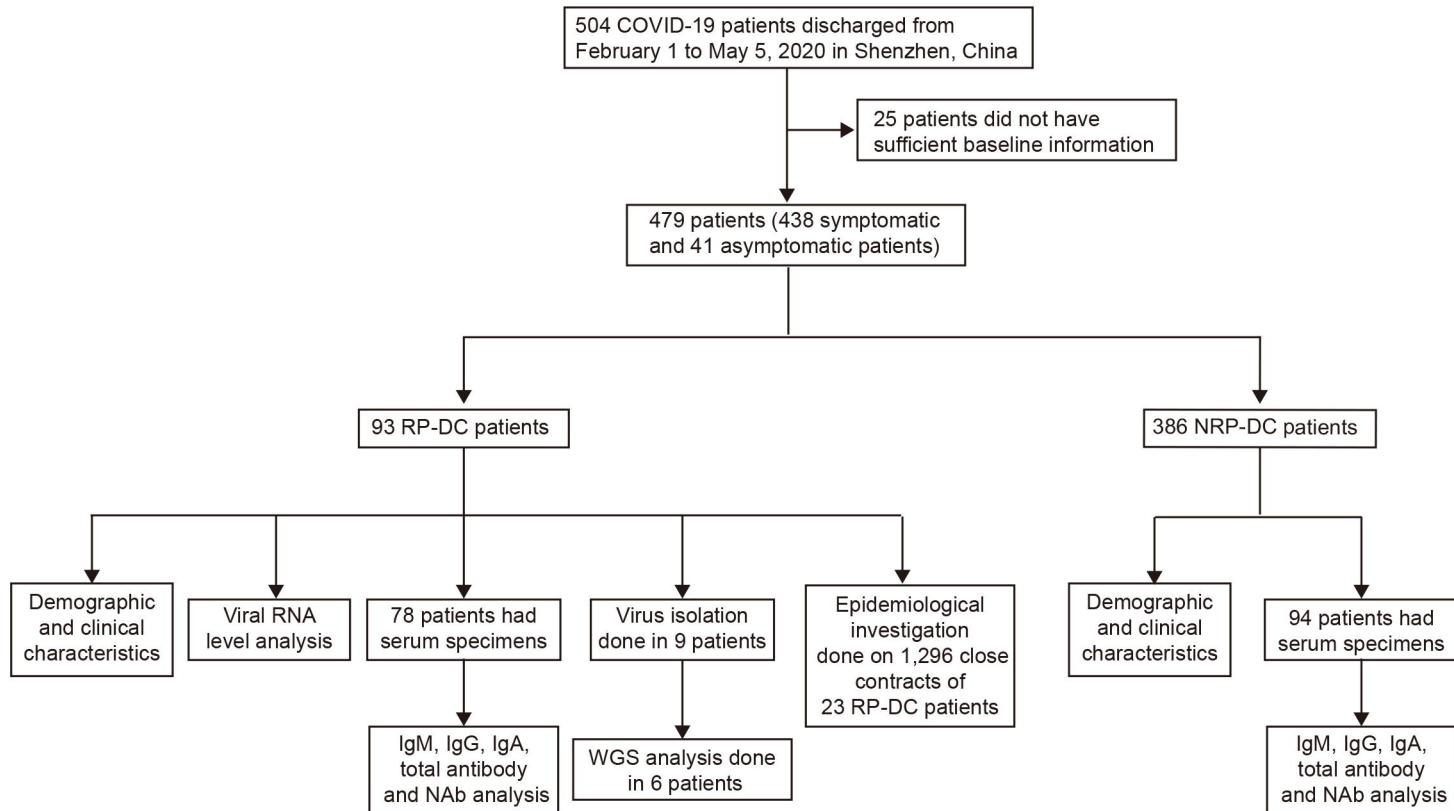
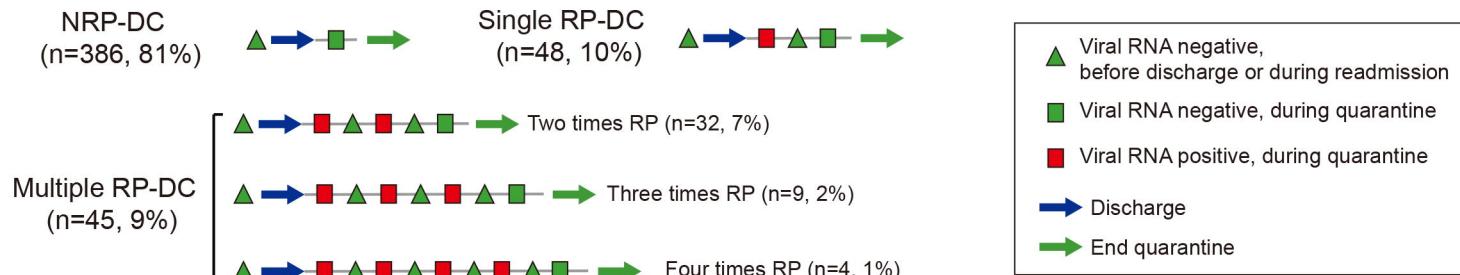
480 **Figure 1.** (a–b) Profile of the discharged COVID-19 patients included in this study (a) and case
481 definition concept figure (b).

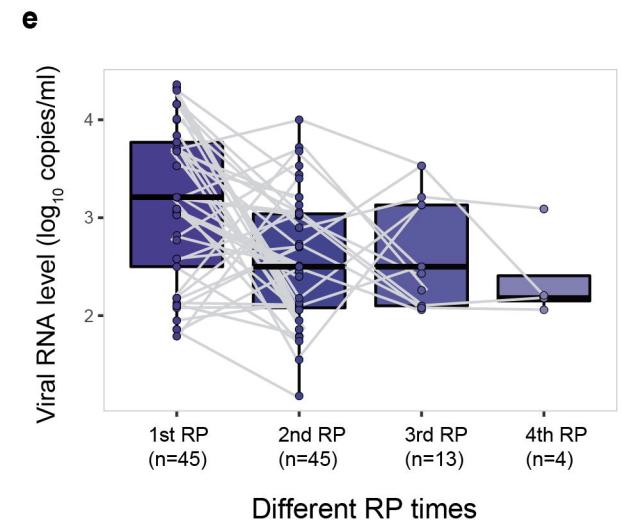
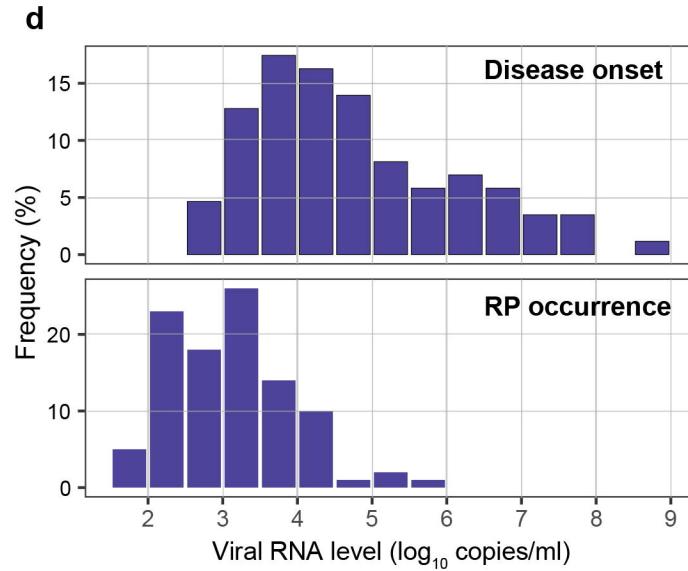
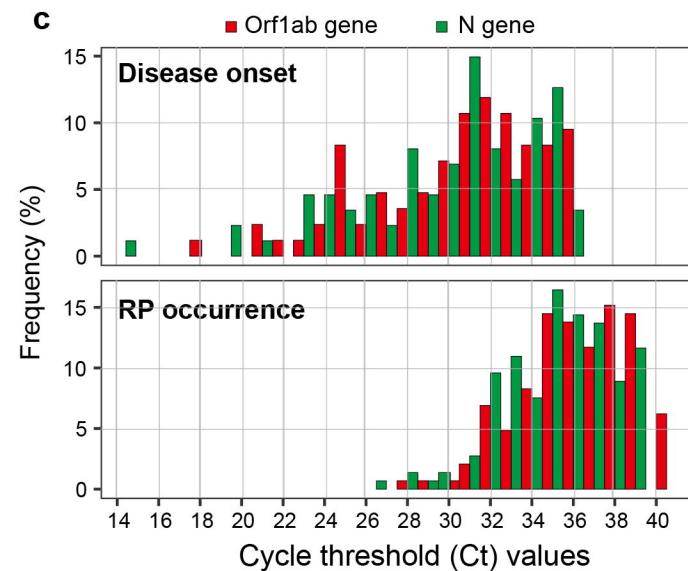
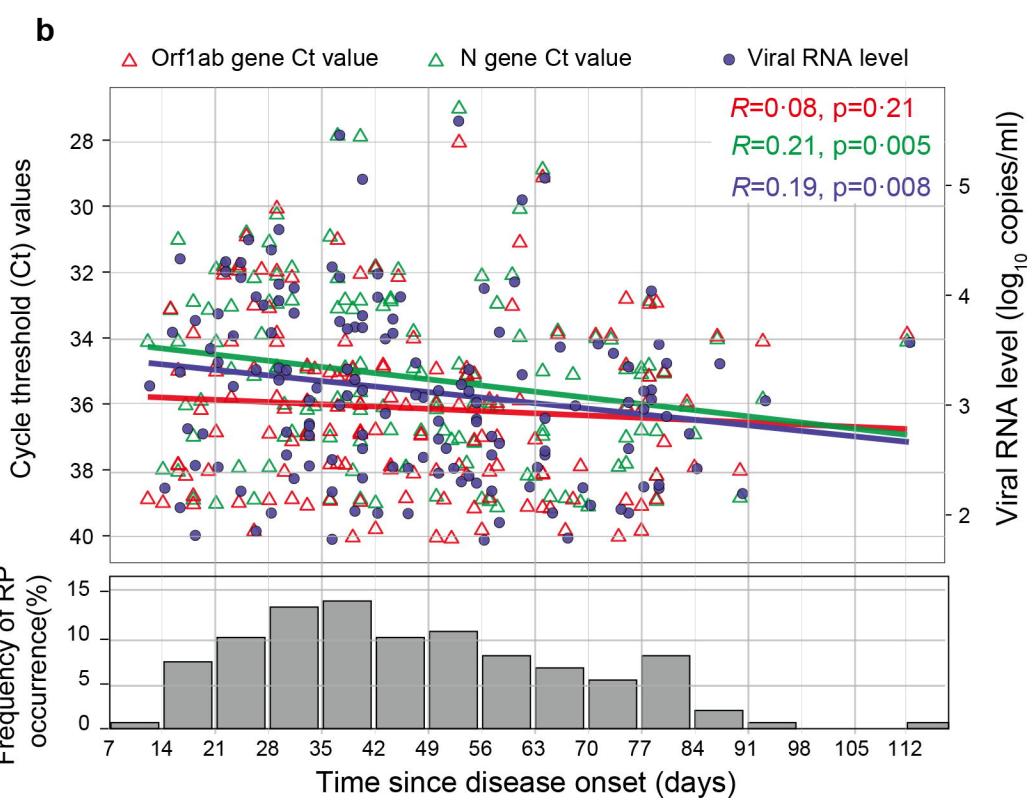
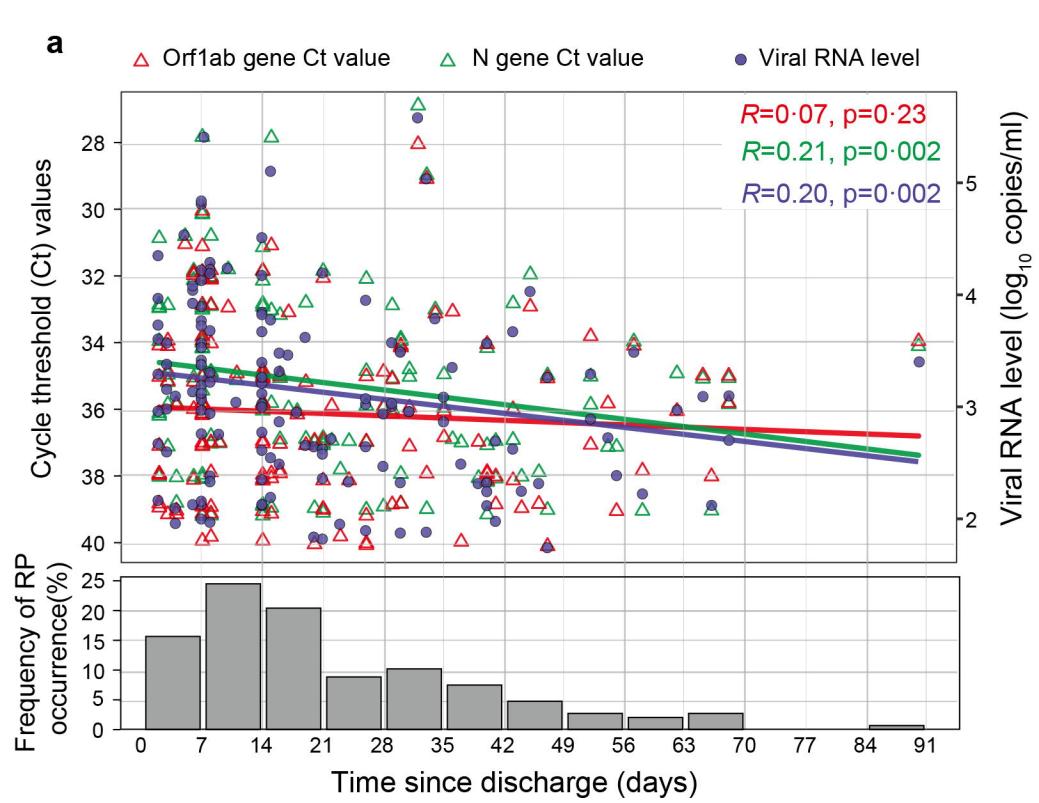
482

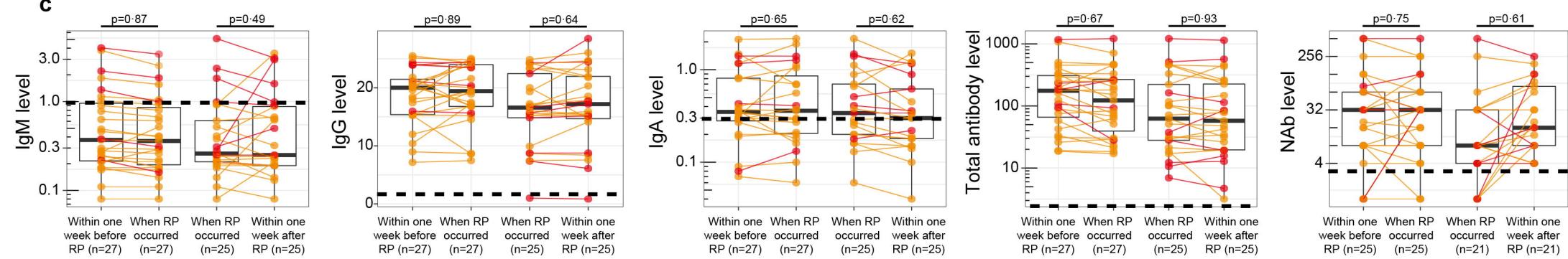
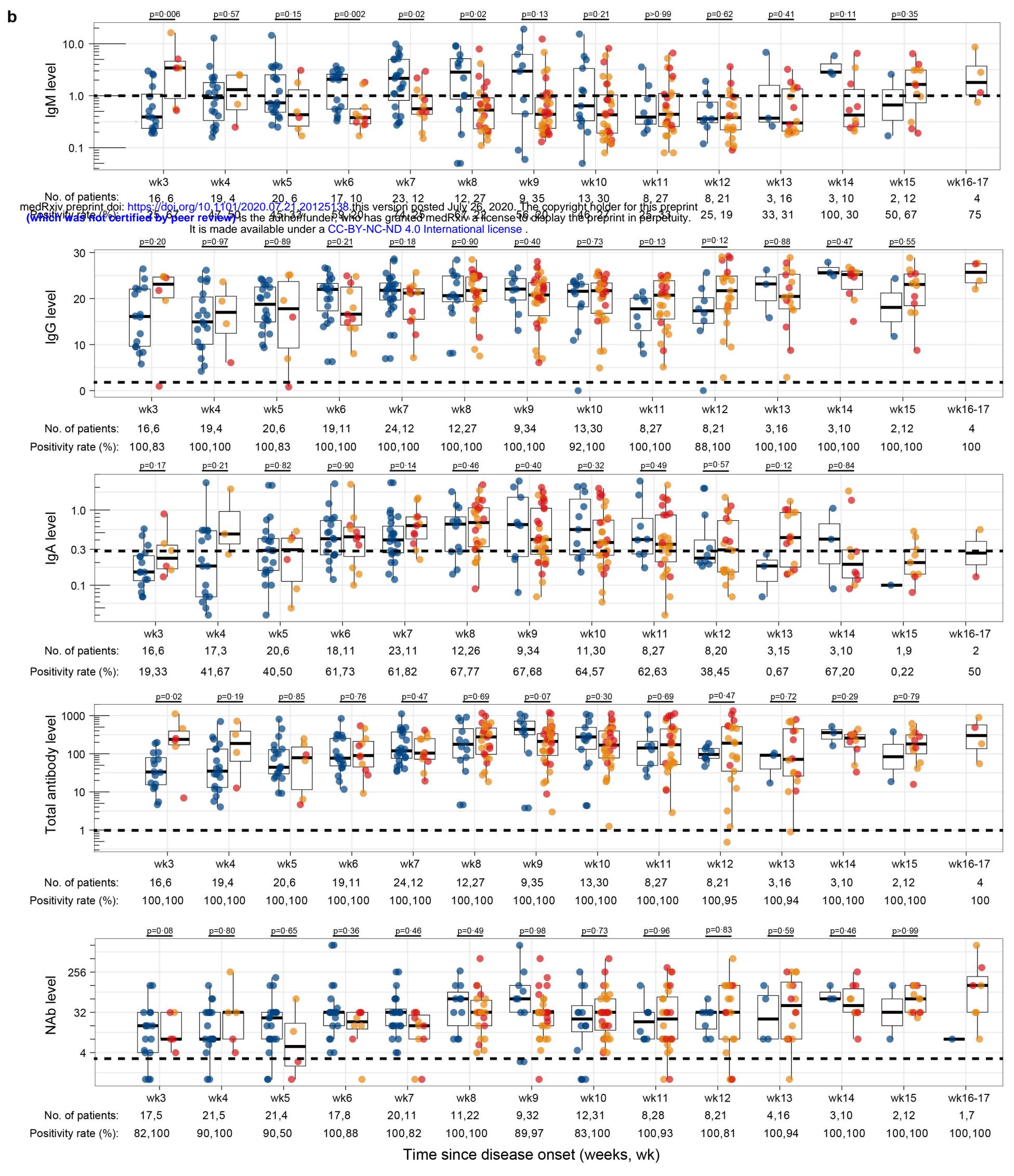
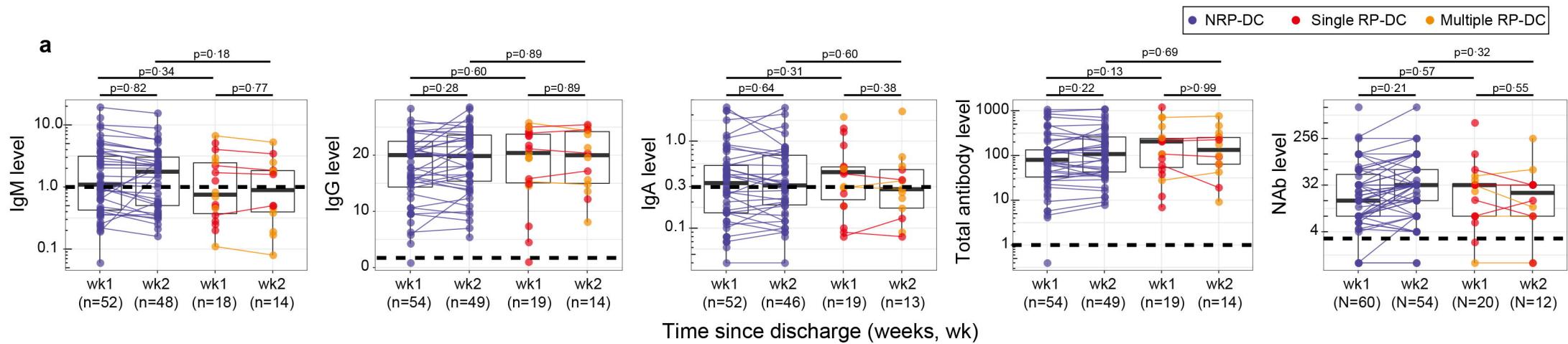
483 **Figure 2. RT-qPCR cycle threshold (Ct) values and viral RNA levels in RP-DC patients.** (a, b)

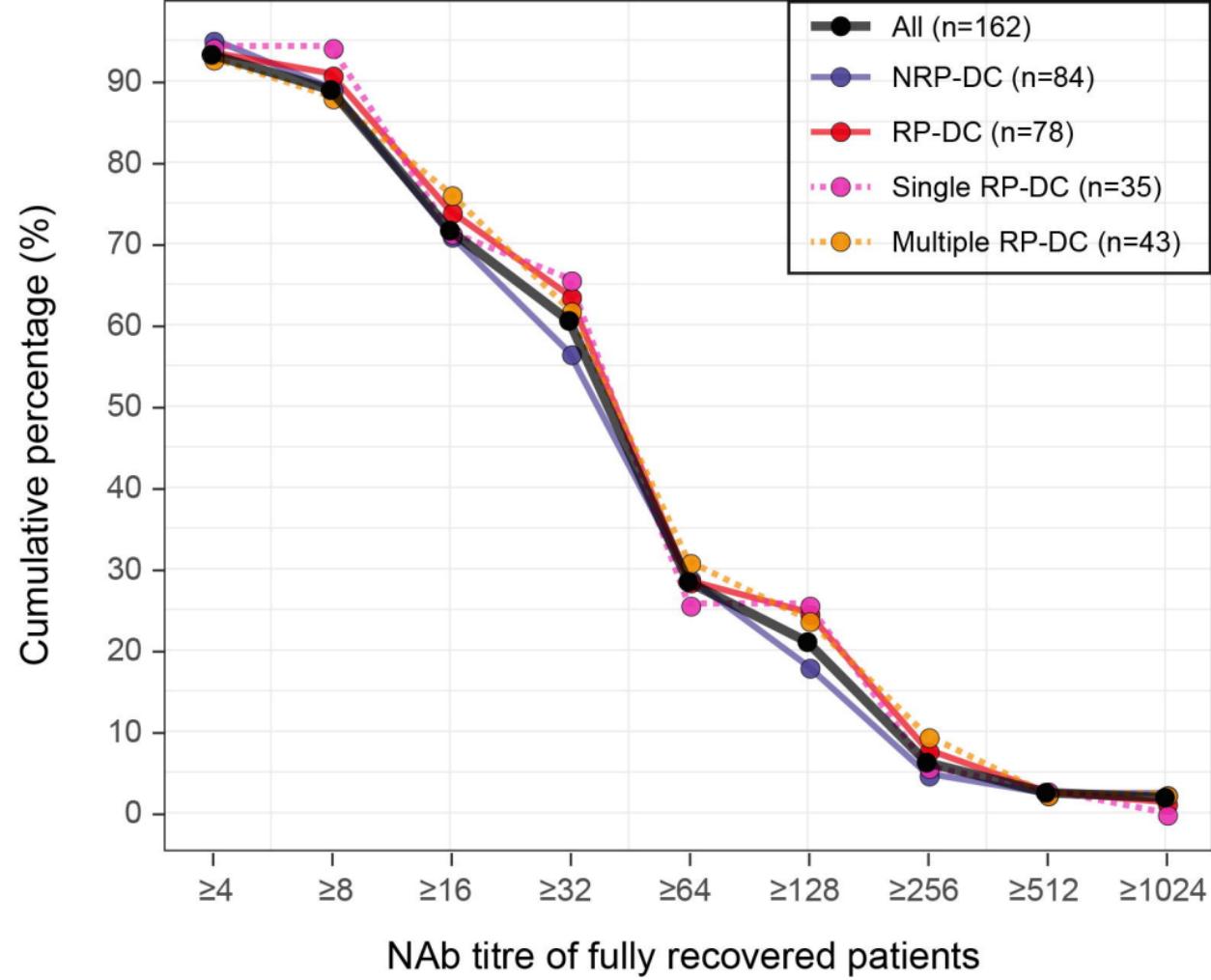
484 Temporal distribution of Ct values (red and green triangles indicate the Orf1ab and N genes,
485 respectively) and viral RNA levels (blue points) since discharge (a) or disease onset (b). The
486 frequency of RP occurrence is shown by grey bars. (c) Ct values of RP-DC patients at the time of
487 disease onset (top) or RP occurrence (bottom); colours indicate different target SARS-CoV-2
488 genes. (d) Estimated viral RNA level based on the correlation between viral RNA level and Ct
489 value at the time of disease onset (top) or RP occurrence (bottom). (e) Viral RNA level dynamics
490 in multiple-RP-DC patients. Specimens from individual patients are linked by grey lines.

491



492 **Figure 3. Serum SARS-CoV-2-specific antibody levels in RP-DC and NRP-DC patients.** (a–b)






493 Levels of antibody against SARS-CoV-2 surface spike protein receptor-binding domain in RP-DC
494 and NRP-DC patients within two weeks post-discharge (a) or since disease onset (b). (c) Anti-
495 SARS-CoV-2 surface spike protein receptor-binding domain antibody levels in RP-DC patients
496 within one week before RP detection, at the time of RP detection, and within one week after RP
497 detection. Blue, red, and orange points show NRP-DC, single-RP-DC, and multiple-RP-DC patients,
498 respectively. Specimens from individual patients are linked by lines. Horizontal dotted lines indicate
499 the positive detection threshold.




500


501 **Figure 4. Reverse cumulative distribution curves of NAb titres in fully recovered patients.**

502 Colours show different types of patients.

a**b**

